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Abstract

Effects on transient waves of circumferential and radial inhomogeneity are studied in a plane-strain hollow cylinder.
A periodic circumferential inhomogeneity modulating a constant value is analyzed adopting the Galerkin method
where trial functions are chosen as the axisymmetric and asymmetric modes of the homogeneous cylinder. A periodic
radial inhomogeneity is analyzed by dividing the cylinder into annular segments of constant width. A stepwise variation
in modulus is assumed where modulus is constant over each segment. Adopting transfer matrices, continuity of state
variables at interfaces of segments establishes the global dynamic equilibrium of the segmented cylinder. The static-
dynamic superposition method is employed to solve for transient response.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Propagation of transient stress waves in human tissue during projectile penetration concerns medical
researchers as overpressure from these waves may cause indirect trauma in human organs. As the projectile
penetrates into tissue, it moves material by replacing it with its own volume. When tissue fails, it acts more
like a fluid, lessening the amount of material being compressed by the moving projectile. In the radial direc-
tion, tissue is compressed by an expanding cross-section of the projectile�s smoothly curved nose. This rapid
expansion generates compressive waves symmetric about the projectile�s axis that attenuate with distance.
El-Raheb (2004) develops a model that approximates penetrated tissue as a homogeneous hollow finite
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cylinder with inner radius that of the projectile and a sufficiently large outer radius to avoid interference
from reflections at the outer boundary during the simulation time. A radial velocity is prescribed at the cyl-
inder�s inner boundary over the finite projectile length accounting for radial expansion from projectile axial
motion.

This work evaluates the effect on propagation of material inhomogeneity that may result either from spa-
tial variation in modulus or asymmetric radial tearing. Since real tissue inhomogeneity is complicated to
model, the analysis to follow treats two uncoupled types of material inhomogeneity; circumferential or
h-inhomogeneity and radial or r-inhomogeneity. h-inhomogeneity is asymmetric as modulus E varies peri-
odically with angular coordinate h but remains constant along the radial coordinate r. In this case both
extensional and shear waves are excited. r-inhomogeneity is axisymmetric as E varies only along r but re-
mains constant along h. In this case only extensional waves are excited. In practice both h and r inhomo-
geneities exist in tissue, nevertheless the two types are presently addressed separately for parametric
evaluation of each type�s effect avoiding the cross-coupling that may result if both were acting together.
Since histories from the homogeneous finite cylinder model (El-Raheb, 2004) compared favorably with
those from the homogeneous plane-strain model, the latter model is adopted for studying material
inhomogeneity.

Whittier and Jones (1967) studied the propagation of longitudinal and torsional waves in a bi-material
solid cylinder composed of an inner homogeneous core bonded to an outer homogeneous annular cylinder
of different properties. Armenakas (1967), Reuter (1969), Armenakas and Keck (1970), studied flexural
waves in bi-material cylinders. Keck and Armenakas (1971) presented an exact solution for longitudinal
waves in an infinitely long composite hollow cylinder made of three different transversely isotropic layers.
Vibrations of homogeneous hollow plane-strain cylinders was analyzed by Gazis (1958), Bird et al. (1960),
and Baltrukonis (1960). The references above were restricted to three concentric axisymmetric layers. Yin
and Yue (2002) analyzed the plain-strain axisymmetric problem with multiple annular layers using Laplace
transforms to integrate time dependence. Heyliger and Jilania (1992) adopted a variational method and a
Ritz approximation to study frequency response of inhomogeneous cylinders and spheres. Steinberg (1995)
formulated the inverse spectral problem to determine properties of a cylinder with inhomogeneous mate-
rials. Inertial h-inhomogeneity from point masses attached to the wall of a thin cylinder was analyzed by
El-Raheb and Wagner (1989).

In Section 2, h-inhomogeneity is treated adopting the Galerkin method. Eigenfunctions of the asym-
metric homogeneous dynamic equations are utilized as trial functions in the inhomogeneous dynamic equa-
tions. Orthogonality of radial and circumferential dependence produces an eigenvalue problem with
coupling coefficients as the eigenvector. The static-dynamic superposition method is adopted to solve the
transient response. In Section 3, a stepwise r-inhomogeneity is treated adopting transfer matrices of annular
segments with varying properties. Continuity of stress and displacement at interfaces of segments yields a
global transfer matrix producing eigenstates of the multi-layered cylinder. Once more, transient response is
found adopting the static-dynamic superposition method. Section 4 discusses transient histories in hollow
cylinders with the two types of inhomogeneity.
2. Circumferential inhomogeneity

Consider the plane-strain dynamic equilibrium equations in cylindrical coordinates
orrrr þ ðrrr � rhhÞ=r þ 1=rohsrh ¼ qottu

orsrh þ 2srh=r þ 1=rohrhh ¼ qottt

rp 6 r 6 ro; 0 6 h 6 2p

ð1aÞ
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with boundary conditions
rrrðrp; h; tÞ ¼ p0fpðtÞ; srhðrp; h; tÞ ¼ 0

rrrðro; h; tÞ ¼ 0; srhðro; h; tÞ ¼ 0
ð1bÞ
rp and ro are cylinder inner and outer radii, rrr, rhh, srh are normal and shear stresses, (r,h) are radial and
circumferential coordinates, (u,t) are corresponding displacements, q is density, t is time, p0 is magnitude of
uniform pressure applied at r = rp and fp(t) is its time dependence. The constitutive relations are
rii ¼ kDþ 2leii; ii � rr; hh; zz

D ¼ err þ ehh; ezz ¼ 0

rij ¼ leij; ij � rh; hz; zr

ð2aÞ

err ¼ oru; ehh ¼ u=r þ 1=roht; ezz ¼ 0

erh ¼ 1=rohuþ ort� t=r
ð2bÞ
(k,l) are the Lame� constants. For the homogeneous medium, substituting (2b) in (2a) then in (1a) yields the
dynamic displacement equations
lðD11uþ D12tÞ ¼ qottu

lðD21uþ D22tÞ ¼ qottt
ð3Þ

D11 � ½ðbþ 2Þr̂2

1 þ 1=r2ohh�; D12 � 1=roh½ðbþ 1Þor � ðbþ 3Þ=r�

D21 � 1=roh½ðbþ 1Þor þ ðbþ 3Þ=r�; D22 � ½r̂2

1 þ ðbþ 2Þ=r2ohh�

r̂2

1 � orr þ 1=ror � 1=r2; b ¼ k=l ¼ 2m=ð1� 2mÞ

m is Poisson�s ratio. Eq. (3) is the limiting case of Eq. (A.1) in Appendix A when the z dependence vanishes.

Assume a circumferentially inhomogeneous modulus l(h) symmetric about h = 0 with a Fourier
expansion
lðhÞ ¼ l0

XNE

l¼0

elClðhÞ; SlðhÞ ¼ sinðlhÞ; ClðhÞ ¼ cosðlhÞ ð4Þ
Substituting (4) in (2a,b) then in (1a) produces the equations
X
l¼0

elClðhÞl0ðD11uþ D12tÞ þ
X
l¼1

ellSlðhÞl0ðeD11uþ eD12tÞ ¼ qottu ð5aÞ

X
l¼0

elClðhÞl0ðD21uþ D22tÞ þ
X
l¼1

ellSlðhÞl0ðeD21uþ eD22tÞ ¼ qottt ð5bÞ

eD11 � �1=r2oh; eD12 � �1=ror þ 1=r2

eD21 � �b=ror � ðbþ 2Þ=r2; eD22 � �ðbþ 2Þ=r2oh

To solve (5), the Galerkin method is adopted. u and t are expanded in terms of orthogonal trial functions
satisfying the boundary conditions at the inner and outer walls of the cylinder r = rp and r = ro. One admis-
sible set is the eigenfunctions of the homogeneous problem in Eq. (3) with l = l0 the axisymmetric term in
the l(h) expansion (4). For harmonic motions in time with radian frequency x and periodicity along h, the
solution to (1a) is
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uðr; h; tÞ ¼ ðu1ðr; hÞ þ u2ðr; hÞÞeixt

tðr; h; tÞ ¼ ðt1ðr; hÞ þ t2ðr; hÞÞeixt
ð6aÞ

u1 ¼
X
n¼0

fc11nkreðnJnðkrerÞ=ðkrerÞ � Jnþ1ðkrerÞÞ þ c12nnJnðkrsrÞ=rgCnðhÞ

t1 ¼
X
n¼0

f�c11nnJnðkrerÞ=r � c12nkrsðnJnðkrsrÞ=ðkrsrÞ � Jnþ1ðkrsrÞÞgSnðhÞ

SnðhÞ ¼ sinðnhÞ; CnðhÞ ¼ cosðnhÞ

ð6bÞ
(u1,t1) are derived in Eqs. (B.1) of Appendix B, and (u2,t2) have the same form as (u1,t1) with Jn(kr) re-
placed by Yn(kr) and (c21n,c22n) replacing (c11n,c12n). Expressions for rrr, srh similar to those for displace-
ment in (6a) and (6b) can be expressed as
rrrðr; h; tÞ ¼ ðrrr1ðr; hÞ þ rrr2ðr; hÞÞeixt

srhðr; h; tÞ ¼ ðsrh1ðr; hÞ þ srh2ðr; hÞÞeixt
ð7aÞ

rrr1 ¼ l
X
n¼0

fc11nðð�ðbþ 2ÞðkrerÞ2 þ 2ðn2 � nÞÞJnðkrerÞ=r2 þ 2kreJnþ1ðkrerÞ=rÞ

þ 2c12nððn2 � nÞJnðkrsrÞ=r2 � nkrsJnþ1ðkrsrÞ=rÞgCnðhÞ ð7bÞ

srh1 ¼ l
X
n¼0

f2c11nð�ðn2 � nÞJnðkrerÞ=r2 þ nkreJnþ1ðkrerÞ=rÞ � 2c12nððn2 � n� ðkrsrÞ2=2ÞJnðkrsrÞ=r2

þ krsJnþ1ðkrsrÞ=rÞSnðhÞ ð7cÞ
(rrr1,srh1) are derived in Eqs. (B.2) of Appendix B, (kre,krs) are radial wave numbers defined in Eqs. (B.1) of
Appendix B. (rrr2,srh2) have the same form as (rrr1,srh1) with Jn(kr) replaced by Yn(kr) and (c11n,c12n) re-
placed by (c21n,c22n). Re-write (7a) in the form
Sðr; h; tÞ � frrr; srhgT ¼
X
n¼0

#nðhÞBnðrÞcneixt

#nðhÞ ¼
CnðhÞ 0

0 SnðhÞ

���� ���� ð8Þ
BnðrÞ is a 2 · 4 matrix of the radial functions in (rrr,srh) multiplying cn = {c11n,c12n,c21n,c22n}
T in (7b,c).

The homogeneous boundary conditions (1a) are
rrrðrpÞ ¼ 0; rrrðroÞ ¼ 0 ð9aÞ

srhðrpÞ ¼ 0; srhðroÞ ¼ 0 ð9bÞ

Substituting (8) in (9a,b) and enforcing orthogonality of the h dependence yields a set of uncoupled eigen-
value problems for each circumferential wave number n
Bncn ¼ 0; Bn ¼
BnðrpÞ
BnðroÞ

" #
) det jBnj ¼ 0 ) fuðrÞ;wðrÞ;xgmn

ð10Þ
Bn is a 4 · 4 matrix, {u(r),w(r)}mn are the displacement eigenfunctions, xmn are the eigenvalues, and m is
radial wave number. In what follows umn(r) and wmn(r) will be written as umn and wmn for shortness since
it is known that they are functions of r only. Expand (u,t) in the eigenfunctions (9)
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uðr; h; tÞ ¼
X
n¼0

X
m¼1

amnðtÞumnCnðhÞ

tðr; h; tÞ ¼
X
n¼1

X
m¼1

amnðtÞwmnSnðhÞ
ð11Þ
Substituting (11) in (5a,b) yields
l0

X
l¼0

elClðhÞ
X
k¼0

X
j¼1

ajkðtÞðDðrÞ
11uþ DðrÞ

12wÞjkCkðhÞ þ l0

X
l¼1

ellSlðhÞ
X
k¼1

X
j¼1

ajkðtÞðeDðrÞ
11uþ eDðrÞ

12wÞjkSkðhÞ

¼ q
X
n¼0

X
m¼1

€amnðtÞumnCnðhÞ

SkðhÞ ¼ sinðkhÞ; CkðhÞ ¼ cosðkhÞ
ð12aÞ

l0

X
l¼0

elClðhÞ
X
k¼1

X
j¼1

ajkðtÞðDðrÞ
21uþDðrÞ

22wÞjkSkðhÞ þ l0

X
l¼1

ellSlðhÞ
X
k¼0

X
j¼1

ajkðtÞðeDðrÞ
21uþ eDðrÞ

22wÞjkCkðhÞq

¼ q
X
n¼1

X
m¼1

€amnðtÞwmnSnðhÞ ð12bÞ
In (12a,b) the operators DðrÞ
ij are the same as Di j in (5) with the h dependence eliminated, and (•) is derivative

with respect to t. From Eq. (3), noting that
ðDðrÞ
11uþ DðrÞ

12wÞjk ¼ �q=l0x
2
jkujk

ðDðrÞ
21uþ DðrÞ

22wÞjk ¼ �q=l0x
2
jkwjk

ð13Þ
reduces (12) to
�
X
l¼0

elClðhÞ
X
k¼0

X
j¼1

x2
jkajkðtÞujkCkðhÞ�l0

�
q
X
l¼1

ellSlðhÞ
X
k¼1

X
j¼1

ajkðtÞð�nujk=r
2�wjk=r

2þw0
jk=rÞSkðhÞ

¼
X
n¼0

X
m¼1

€amnðtÞumnCnðhÞ ð14aÞ

�
X
l¼0

elClðhÞ
X
k¼1

X
j¼1

x2
jkajkðtÞwjkSkðhÞ � l0

�
q
X
l¼1

ellSlðhÞ
X
k¼0

X
j¼1

ajkðtÞðbu0
jk=r

þ ðbþ 2Þujk=r
2 þ nðbþ 2Þwjk=r

2ÞCkðhÞ
¼

X
n¼1

X
m¼1

€amnðtÞwmnSnðhÞ ð14bÞ
For each (m,n) dyad, multiplying both sides of Eq. (14a) by umncos(nh) and both sides of (14b) by
wmnsin(nh), integrating over the domain rp 6 r 6 ro, 0 6 h 6 2p then adding the two resulting equations
produces
ð1þ dn0ÞpNmn€amnðtÞ þ
X
k¼0

X
j¼1

Hð1Þ
nk R

ð1Þ
mn;jk þHð2Þ

nk R
ð2Þ
mn;jk

h i
x2

jkajkðtÞ

þ l0

�
q
X
k¼0

X
j¼1

Hð3Þ
nk R

ð3Þ
mn;jk þHð4Þ

nk R
ð4Þ
mn;jk

h i
ajkðtÞ ¼ 0 ð15aÞ

Nmn ¼
Z ro

rp

ðu2
mn þ w2

mnÞrdr; n ¼ 0; 1; . . . ;N h; m ¼ 1; 2; . . . ;Nr
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Hð1Þ
nk ¼

X
l¼0

el

Z 2p

0

ClðhÞCkðhÞCnðhÞdh; Hð2Þ
nk ¼

X
l¼0

el

Z 2p

0

ClðhÞSkðhÞSnðhÞdh

Hð3Þ
nk ¼

X
l¼1

ell
Z 2p

0

SlðhÞSkðhÞCnðhÞdh; Hð4Þ
nk ¼

X
l¼1

ell
Z 2p

0

SlðhÞCkðhÞSnðhÞdh
ð15bÞ

Rð1Þ
mn;jk ¼

Z ro

rp

umnujkrdr; Rð2Þ
mn;jk ¼

Z ro

rp

wmnwjkrdr

Rð3Þ
mn;jk ¼

Z ro

rp

umnð�kujk=r
2 � wjk=r

2 þ w0
jk=rÞrdr

Rð4Þ
mn;jk ¼

Z ro

rp

wmnðbu0
jk=r þ ðbþ 2Þujk=r

2 þ kðbþ 2Þwjk=r
2Þrdr

ð15cÞ
dn0 is the Kronecker delta and ( ) 0 is derivative w.r.t. r. In arriving at (14a) the orthogonality of (umn,wm n)

was utilized. For a homogeneous material, Hð3Þ
nk ¼ Hð4Þ

nk ¼ 0, Hð1Þ
nk ¼ Hð2Þ

nk ¼ ð1þ dn0Þp and Rð1Þ
mn;jk þ Rð2Þ

mn;jk ¼
Nmndmjdnk reducing (11a) to the simple form
€amnðtÞ þ x2
mnamnðtÞ ¼ 0 ð16Þ
To diagonalize (14a,b), form the coupled eigenproblem
½Kc �Mcx
2
c �a ¼ 0; a ¼ famngT

Kcmn;jk ¼ x2
jk½H

ð1Þ
nk R

ð2Þ
mn;jk þHð2Þ

nk R
ð2Þ
mn;jk� þ l0=q½H

ð3Þ
nk R

ð3Þ
mn;jk þHð4Þ

nk R
ð4Þ
mn;jk�

Mcmn;jk ¼ ð1þ dn0ÞpNmndmjdnk

ð17Þ
Kc is a stiffness matrix of order (NrNh) · (NrNh), Mc is a diagonal mass matrix of the same order. The eigen-
problem (13) yields the orthogonal eigenset {Uci(r,h); xci} where Uci(r,h) is the ith eigenvector coupling the
constituent modes {umn,wmn} by the coupling coefficients {amn,i}

T, and xci are the corresponding eigen-fre-
quencies. The coupled state vector Sc = {uc,tc,rrrc,rhhc,rzzc,srhc}

T can be expanded in terms of Uci(r,h) as
Scðr; h; tÞ ¼
X
i

ciðtÞUciðr; hÞ ð18aÞ
Uclðr; hÞ ¼
X
n

X
m

amn;lSmnðr; hÞ

Uciðr; hÞ ¼ f�uc;�tc; �rrrc; �rhhc; �rzzc;�srhcgTi
ð18bÞ
Smn is the state eigenvector of the (m,n)th constituent mode and �uci;�tci; . . . ;�srhci are components of the ith
coupled eigenvector Uci(r,h).

Express displacement u(r,h; t) as a superposition of two terms
uðr; h; tÞ ¼ usðr; hÞfpðtÞ þ udðr; h; tÞ ð19Þ

us(r,h) is static displacement vector satisfying (5) with vanishing time dependence and boundary conditions
(1b) with fp (t) = 1 (see Appendix C), ud (r,h; t) is dynamic displacement vector satisfying (5) and boundary
conditions (1b) with fp(t) = 0
usðr; hÞ ¼ us0ðrÞ þ
X
n¼0

UsnCnðhÞ; tsðr; hÞ ¼
X
n¼0

V snSnðhÞ

Usn ¼
X
m¼1

bmnumn; V sn ¼
X
m¼1

bmnwmn

ð20Þ
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us0(r) is the axisymmetric radial displacement satisfying the inhomogeneous boundary condition (1b) with
fp(t) = 1 (see Appendix C). Expand ud(r,h; t) in the eigenfunctions ð�uci;�tciÞ
udðr; h; tÞ ¼
X
i

ciðtÞ�uciðr; hÞ; �uciðr; hÞ ¼
X
n¼0

X
m¼1

amn;iumnCnðhÞ

tdðr; h; tÞ ¼
X
i

ciðtÞ�tciðr; hÞ; �tciðr; hÞ ¼
X
n¼1

X
m¼1

amn;iwmnSnðhÞ
ð21Þ
ci(t) is generalized coordinate of the ith coupled eigenfunction. Substituting (19)–(21) in (5) and enforcing
orthogonality of the f�uci;�tcig set yields uncoupled equations in ci(t)
€ciðtÞ þ x2
ciciðtÞ ¼ �f iðtÞ ð22aÞ

�f iðtÞ ¼ Nsi
€f pðtÞ=Nii

N ii ¼
Z 2p

0

Z ro

rp

ð�u2ci þ �t2ciÞrdrdh ¼ p
X
n¼0

ð1þ dn0Þ
Z ro

rp

ðU 2
n;i þ V 2

n;iÞrdr

Nsi ¼
Z 2p

0

Z ro

rp

ð�ucius þ �tcitsÞrdrdh

¼ 2p
Z ro

rp

ðUs0 þ us0ÞU 0;irdr þ p
X
n¼1

Z ro

rp

ðUn;iU sn þ V n;iV snÞrdr

Un;i ¼
X
m¼1

amn;iumn; V n;i ¼
X
m¼1

amn;iwmn

ð22bÞ
bmn are coupling coefficients of the coupled static solution. Eq. (22a) admits the solution
ciðtÞ ¼ � 1

xci

Z t

0

sinxciðt � sÞ�f iðsÞds ð23aÞ
If fp(t) is piecewise linear with ns conjoined segments
fpðtÞ ¼
Xns
j¼1

ðaj þ bjðt � tjÞÞ½Hðt � tjÞ � Hðt � tjþ1Þ�

bj ¼ ðfpðtjþ1Þ � fpðtjÞÞ=ðtjþ1 � tjÞ; aj ¼ fpðtjÞ; t1 ¼ fpðt1Þ ¼ 0

€f pðtÞ ¼ b1dðtÞ � bnsdðt � tnsþ1Þ þ
Xns�1

j¼1

ðbjþ1 � bjÞdðt � tjþ1Þ

ð23bÞ
then (23a) can be integrated analytically with an accuracy independent of the time interval.
3. Radial inhomogeneity

Consider a stepwise radial variation in modulus as follows. Divide the region rp 6 r 6 ro into Nr equi-
distant annular segments
rj 6 r 6 rjþ1; j ¼ 1; . . . ;Nr

Dr ¼ Drj ¼ rjþ1 � rj ¼ ðro � rpÞ=Nr
ð24Þ
Assume that cj = {c1j,c2j}
T is constant over each segment but varies from segment to segment. Since axial

symmetry holds, the following equation applies to the jth segment
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ðkþ 2lÞjðorr þ 1=ror � 1=r2Þuj ¼ qottuj ð25Þ
For harmonic motions in time with radian frequency x, Eq. (25) admits the solution for the jth segment
ujðr; tÞ ¼ �ujðrÞeixt; �ujðrÞ ¼ c1jJ 1ðkejrÞ þ c2jY 1ðkejrÞ
kej ¼ x=cej; c2ej ¼ ðkþ 2lÞj=q

ð26Þ
Substituting (26) in the constitutive relations (2a,b) yields
�rrrj ¼ ljc1jð�ðbþ 2ÞkejJ 0ðkejrÞ þ 2J 1ðkejrÞ=rÞ þ ljc2jð�ðbþ 2ÞkejY 0ðkejrÞ þ 2Y 1ðkejrÞ=rÞ ð27Þ
For each annular segment, express the state vector Sj ¼ f�rrrj; �ujgT in terms of the constant vector
cj = {c1j,c2j}

T

SjðrÞ ¼ BjðrÞcj ð28Þ

Bj(r) is a matrix with coefficients the functions multiplying (c1j,c2j) in (26) and (27). Evaluating (28) at the
two ends of the jth segment then eliminating cj determines the (2 · 2) transfer matrix Tj relating state vec-
tors at the ends of a segment
Sjðrjþ1Þ ¼ TjSjðrjÞ; Tj � ½tjkl� ¼ B�1
j ðrjÞBjðrjþ1Þ ð29aÞ

cj ¼ B�1
j ðrjÞSjðrjÞ ð29bÞ
Enforcing continuity of Sj at interfaces of segments and homogeneous boundary conditions (8a) at r = rp
and r = ro yields the global transfer matrix TG in tri-diagonal block form and global SG which is the ensem-
ble of all Sj
TG � SG ¼ 0 ) det jTGj ¼ 0

SG ¼ fS1ðr1Þ;S2ðr2Þ; . . . ;SjðrjÞ; . . . ;SNrðrNrÞg
T

ð30Þ

TG ¼

�1 0

t111 t112 �1 0

t121 t122 0 �1

t211 t212 �1 0

t221 t222 0 �1

: :

: : tNr
11 tNr

12 �1 0

tNr
21 tNr

22 0 �1

�1 0

266666666666666664

377777777777777775

Eq. (30) determines the eigenset {SG;x} and in turn Cj ¼ fc1; c2; . . . ; cj; . . . ; cNrg

T from (29b).
To solve the transient response problem, decompose the displacement u(r; t) as a superposition of two

terms in the manner as was done for the circumferential inhomogeneity
uðr; tÞ ¼ usðrÞfpðtÞ þ udðr; tÞ ð31Þ

us(r) is static displacement satisfying (25) with vanishing time dependence and boundary conditions (1b)
with fp(t) = 1, and ud(r; t) is dynamic displacement satisfying (25) and boundary conditions (1b) with
fp(t) = 0. The static state vector Ssj ¼ frrrs; usgTj of the jth segment takes the form
rrrsjðrÞ ¼ 2ðkþ lÞjc1sj þ 2ljc2sj=r
2 ð32aÞ
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usjðrÞ ¼ c1sjr þ c2sj=r ð32bÞ

The global static transfer matrix is determined following the steps that led to Eqs. (28) and (29)
TGs � SGs ¼ p0; p0 ¼ fp0; 0; 0; . . . ; 0g
T

SGs ¼ fSs1ðr1Þ;Ss2ðr2Þ; . . . ;SsjðrjÞ; . . . ;SsNrðrNrÞg
T

ð33Þ
Expand ud in its eigenfunctions um(r)
udðr; tÞ ¼
X
m

amðtÞumðrÞ

umðrÞ ¼
XNr

j¼1

kejmðc1jmJ 1ðkejmrÞ þ c2jmY 1ðkejmrÞÞðHðr � rjÞ � Hðr � rjþ1ÞÞ
ð34Þ
H(r) is the Heaviside function, ke j m = xm/ce j and xm is the mth eigenfrequency. Substituting (32a,b) in (31)
then in (25) and enforcing orthogonality of the {um} set yields uncoupled equations in am(t)
€amðtÞ þ x2
mamðtÞ ¼ �f mðtÞ

�f mðtÞ ¼ Nsm
€f pðtÞ=Nm; Nm ¼

Z ro

rp

u2
mrdr; Nsm ¼

Z ro

rp

umusrdr
ð35Þ
Eq. (35) admits the solution
amðtÞ ¼ � 1

xm

Z t

0

sinxmðt � sÞ�f mðsÞds ð36Þ
4. Results

Consider a plane-strain cylinder with properties
E0 ¼ 3:1� 109 dyn=cm2; q ¼ 0:93 g=cm3; m ¼ 0:48

rp ¼ 0:635 cm; ro ¼ 7:62 cm
ð37Þ
This yields extensional and shear wave speeds ce and cs 1.71 and 0.34 km/s and the ratio ce/cs ’ 5. Fig. 1
plots the resonant frequency spectrum X versus discrete n with radial wave number m as parameter.
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Fig. 1. Asymmetric mode frequency spectrum of homogeneous plane-strain cylinder.
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Although each frequency corresponds to a discrete integer n value, the points are joined to facilitate dis-
cerning constant m lines in the explanation to follow. Lines of constant m are almost parallel with slope
proportional to cs. A constant m-line Lm changes slope and coalesces with the next constant m-line Lm+1

without crossing it. Coalescence without crossing is necessary for uniqueness of the eigenstates. Near coa-
lescence, Lm reverts to its original slope while Lm+1 proceeds through similar steps to coalesce with Lm+2

and so on. Remote from coalescence, these lines have a slope proportional to cs and correspond to shear
modes. Near coalescence, envelopes are also straight lines with slope proportional to ce and correspond to
extensional modes. Shear modes are denser than extensional modes when ce/cs is large as in the present
case. Coupling of shear and extensional modes for n P 1 is what distinguishes asymmetric from axisymmet-
ric motions.

Since the static solution is prerequisite to solving transient response, understanding the effect of h-inho-
mogeneity on the static problem will help understanding its effect on transient response. The first step starts
with the simple case of the static axisymmetric homogeneous cylinder with unit prescribed pressure at its
inner boundary r = rp. Fig. 2 plots radial distribution of displacement u0 and stresses rrr0 and rhh0. Remote
from r = rp, u0 / 1/r and (rrr0,rhh0) / 1/r2 , with magnitude equal to applied pressure p0. As expected, rrr0
is compressive and rhh0 is tensile since internal pressure expands the cylinder along the radius.

Consider the plane-strain cylinder with h-inhomogeneity in the form of Eq. (4) including only 2 terms
u0

(a)
lðhÞ ¼ l0ð1þ 0:5 cosð2hÞÞ ð38Þ

l(h) in (38) is symmetric about h = 0 and h = p/2 requiring that only even n�s be included in the expansion
(C.8) of Appendix C. Convergence of the static solution was achieved with m = 60 and n = 0, 2, 4. Fig.
3(a1–e1) plots dependent variable along r with h as parameter and Fig. 3(a2–e2) plots these variables along
h with r as parameter. At h = 0 where E is largest (Fig. 3(a1)), uc decreases along r like u0 in Fig. 2(a) with
peak ucmx(rp, 0) at r = rp slightly less than that of u0. As h increases, ucmx(rp,p/4) diminishes to almost 1/2
ucmx(rp, 0).Along h (Fig. 3(a2)), uc is periodic following approximately the cos(2h) distribution of l(h). This
means that along a constant r-line, the cross-section is squashed with larger curvature at h = 0 and smallest
curvature at h = p/2. This results in flexure of the cross-section adding to rhhc a periodic stress component
that changes from compressive at h = 0 to tensile at h = p/2. Indeed Fig. 3(d1,d2) shows a compressive
over-stress at h = 0 with magnitude 6p0 and a tensile over-stress with magnitude 2p0. The same argument
applies to rzzc in Fig. 3(e1,e2). Note that in Fig. 2 rzz0 is not plotted since it is small because rzz0 ¼
b0=ð1þ b0Þr2p= ðr2o � r2pÞ � r2p=r

2
o � 1. It appears then that in the static case, h-inhomogeneity magnifies

compressive and tensile stresses because of flexure at and near the inner boundary, and raises axial stress
substantially from the homogeneous case.

Consider transient response of a homogeneous plane-strain cylinder forced by a 10 ls trapezoidal pulse
of unit intensity, with 1 ls rise and fall times and a 8 ls plateau. Fig. 4 plots histories of dependent variables
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Fig. 2. Axisymmetric static variables of homogeneous plane strain cylinder.
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within a 60 ls time range. Fig. 4(a) shows u histories at three different radial stations. u increases almost
linearly while the forcing pulse is nonzero then drops smoothly until waves reflect from the free boundary
r = ro. Note the time delay in response for r = 2rp and r = 4rp equal to travel time of extensional waves to
reach these stations from r = rp. Fig. 4(b) plots velocity history. Velocity increases steeply with rise time
that of the forcing pulse, then continues to increase at a reduced rate until the forcing pulse elapses consis-
tent with the shape of the u history in Fig. 4(a). The smooth rise during the plateau portion of the pulse is
characteristic of cylindrical symmetry as it is flat in 1-D and 2-D. rrr follows the shape of the forcing pulse
closely since it must satisfy the boundary condition at r = rp (see Fig. 4(c)). However, rhh while being tensile
for all r in the static case (Fig. 2(b)), is compressive throughout the duration of the pulse then changes to
tensile after the pulse elapses. An explanation is that shortly after the pulse is applied, a narrow annular
region bounded by the extensional wave-front undergoes stress while the wave-front acts as a solid but
moving boundary. During this time, the state of stress in this instantaneously confined annular region is
almost hydrostatic where all three normal stress components are approximately equal. Release of pressure
at the end of the pulse and radial motion of the wave-front reverts to the free motion when rhh changes to
tensile.

Consider transient response of the plane-strain cylinder with the h-inhomogeneity given by (38). Fig. 5
plots histories of each dependent variable along a column for a specific h. Three values of h are chosen: 0, p/
4, p/2. Unless specified on the ordinate of some variable, labels along a row are the same for all h. Excep-
tions to this rule are when the variable at h = 0 is substantially larger than that for other values of h. At
h = 0 (Fig. 5(a1)), magnitudes of the u histories are approximately half those for the other h�s. This may
seem counter intuitive as it is the opposite of the static case (Fig. 3(a1,a2)). Yet, the explanation is the same
as that for the sign of rhh in the homogeneous cylinder (Fig. 4(d)). Shortly after the pulse is applied, the
wave-front confines a narrow annular region near r = rp where the state of stress is hydrostatic. Since at
h = 0, modulus is 3 times larger than at h = p/2, and since hydrostatic displacement is inversely propor-
tional to modulus, the result in Fig. 5(a1) is obtained. Histories of circumferential displacement t are plot-
ted only for h = p/4 (Fig. 5(b2)) since t / sin(nh) vanishes at h = 0 and h = p/2 for n = 2 and n = 4.



Fig. 5. Histories of plane-strain cylinder with h-inhomogeneity (a1)–(f1) h = 0, (a2)–(f2) h = p/4, (a3)–(f3) h = p/2.
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Magnitude of t is approximately 1/5 that of u for the h shown. Also, travel time is approximately 5 times
that for u in Fig. 5(a2). This implies that t propagates at the speed of shear waves cs. Histories of rrr (Fig.
5(c1–c3)) qualitatively resemble the corresponding ones of the homogeneous cylinder (Fig. 4(c)). The dif-
ference is that magnitude of rrr reduces with modulus as evidenced by comparing Fig. 5(c1) to Fig.
5(c2,c3). Histories of rhh at h = 0 (Fig. 5(d1)) are particularly interesting. Throughout the duration of
the pulse, response is comparable to the homogeneous cylinder. After the pulse elapses, rhh becomes tensile
reaching a peak 3.5p0 at t = 90 ls. The first peak of rhh occurs at the 1/4 period of the coupled fundamental
resonance with a frequency of 2.6 kHz compared to the fundamental axisymmetric resonance of the homo-
geneous cylinder at 6.1 kHz. For an impulsive pressure, setting �f iðsÞ ¼ dðsÞ in (23a) yields ai(t) / sin(xit)/xi

implying that the largest amplitude of free oscillation is inversely proportional to the fundamental reso-
nance. This explains the larger rhh amplitude of the inhomogeneous cylinder compared the homogeneous
one. Histories of rzz (Fig. 5(e1–e3)) resemble those of rrr (Fig. 5(c1–c3)) except that magnitude at h = 0 is
approximately double that at h = p/4. Finally, velocity histories (Fig. 5(f1–f3)) follow the u histories (Fig.
5(a1–a3)) in that magnitude of velocity at h = 0 is lower than that at h = p/4 and at h = p/2.

In the case of r-inhomogeneity assume the following distribution of modulus E(r)
EðrÞ ¼ E0ð1þ 0:5 sinð4pðr � rpÞ=ðro � rpÞÞÞ ð39Þ

where E0 and all other properties are given in (37). In this way, the highest to lowest E(r) ratio is 3 similar to
the h-inhomogeneity. The cylinder is divided into 45 annular constant width segments each assigned a con-
stant E(ri) following (39) with ri being the mean radius of the ith segment. The corresponding stepwise ce
distribution is shown in Fig. 6. The cylinder is forced by the same 10 ls trapezoidal pulse used in the case of
the h-inhomogeneity. Fig. 7(a–e) plots histories of the cylinder in the interval 0 6 t 6 80 ls. Throughout the
duration of the pulse, histories of the cylinder with r-inhomogeneity are almost the same as those of the
homogeneous case (see Fig. 4). During this time, response is confined to a narrow ring close to r = rp, where
magnitude depends only on properties in this region. After the pulse elapses and the wave-front moves out-
ward, response then differs from the homogeneous case especially after reflection from the outer boundary
r = ro.

It is evident from the examples above that for the same level of inhomogeneity, h-inhomogeneity has a
more pronounced effect on transient response both in shape and magnitude. The fundamental reason is that
with a h-inhomogeneity, asymmetric waves are excited that include both extensional and shear components
adding to the spectrum modes with lower frequency. These modes magnify amplitude of free motion for all
dependent variables.
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Fig. 6. Radial stepwise distribution of normalized ce.
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5. Conclusion

Transient response of a plane-strain hollow cylinder was analyzed for both h- and r-inhomogeneity. For
a h-inhomogeneity with periodic modulation noteworthy results are

1. Dependent variables acquire a periodicity along the circumference.
2. Static rhh and rzz are magnified at h = 0 and r = rp compared to the homogeneous case.
3. Static rhh is modulated by a flexural components that is compressive along the axis of highest modulus

and tensile along the axis of weakest modulus.
4. Asymmetric waves are induced that include extensional and shear components adding modes with lower

frequencies to the spectrum. This in turn magnifies amplitude of rhh and rzz after the forcing pulse
elapses and free harmonic motion starts.

For a periodic r-inhomogeneity the principal results are

1. When the forcing pulse is acting, response resembles the homogeneous case.
2. Differences in response appear after the pulse elapse especially after reflection from the outer boundary.
3. Fixing the level of inhomogeneity, h-inhomogeneity has a more pronounced effect on response than r-

inhomogeneity because of the absence of shear waves in the latter.
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Appendix A. Asymmetric dynamic solution of homogeneous finite cylinder

For periodic motions in time, The Navier equations of elastodynamics can be written in vector form as
ðkþ lÞ$ð$ � uÞ þ l$ � ð$uÞ þ qx2u ¼ 0 ðA:1Þ

where k and l are Lame�s constants, q is density, u is displacement vector, and x is radian frequency. For
cylindrical coordinates (r,h,z) where z is along the axis of revolution, u can be expressed in terms of three
scalar potentials u, n, g as follows:
u ¼ $uþ $� ðnezÞ þ $� $� ðgezÞ
u � uer þ teh þ wez

ðA:2Þ
where er, eh, ez are a unit vectors along r, h, z. Substituting (A.2) in (A.1) then taking the divergence yields
r2uþ k2eu ¼ 0; r2 � orr þ 1=ror þ 1=r2ohh þ ozz

ke ¼ x=ce; c2e ¼ ðkþ 2lÞ=q
ðA:3Þ
Substituting (A.2) in (A.1) and taking the curl yields
r2nþ k2sn ¼ 0

r2gþ k2sg ¼ 0

ks ¼ x=cs; c2s ¼ l=q

ðA:4Þ
For simply-supported boundary conditions at z = 0, l and periodicity along h, (u,n,g) can be expressed
in terms of Bessel functions in r and harmonic functions in h and z
uðr; h; zÞ ¼ ðc11JnðkrerÞ þ c21Y nðkrerÞÞSmðzÞCnðhÞ
nðr; h; zÞ ¼ ðc12JnðkrsrÞ þ c22Y nðkrsrÞÞSmðzÞSnðhÞ
uðr; h; zÞ ¼ ðc13JnðkrsrÞ þ c23Y nðkrsrÞÞCmðzÞ;CnðhÞ

ðA:5aÞ

SnðhÞ ¼ sinðnhÞ; CnðhÞ ¼ cosðnhÞ
SmðzÞ ¼ sinðkzmzÞ; CmðzÞ ¼ cosðkzmzÞ
k2re ¼ k2e � k2zm; k2rs ¼ k2s � k2zm; kzm ¼ mp=l

m ¼ 1; 2; . . . ;M ; n ¼ 0; 1; . . . ;N

ðA:5bÞ
m is an integer axial wave number that follows from the exact solution of the separated axial dependence
satisfying simply supported boundary conditions at z = 0,l which require that u(r,h,z) = t(r,h,z) =
rzz(r,h,z) = 0 at z = 0, l. Similarly, n is an integer circumferential wave number that follows from the exact
solution of the separated circumferential dependence satisfying continuity of dependent variable along the
cylinder�s circumference. Subscript m in kzm will be dropped hereafter for shortness.

If D is a dependent variable, then
DðJn; Jnþ1; Y n; Y nþ1Þ ¼ D1ðJn; Jnþ1Þ þ D2ðY n; Y nþ1Þ ðA:6Þ

Since D2 has the same form as D1 except that the primitives Jn, Jn+1 in D1 are replaced by Yn, Yn+1 in D2,
only expressions for D1 will be listed below for shortness. Substituting (A.5) in (A.2) produces expressions
for displacements
u1 ¼
X
n

X
m

fc11mnkreðnJnðkrerÞ=ðkrerÞ � Jnþ1ðkrerÞÞ þ c12mnnJnðkrsrÞ=r

� c13mnkrskzðnJnðkrsrÞ=ðkrsrÞ � Jnþ1ðkrsrÞÞgSmðzÞCnðhÞ ðA:7aÞ
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t1 ¼
X
n

X
m

f�c11mnnJnðkrerÞ=r � c12mnkrsðnJnðkrsrÞ=ðkrsrÞ � Jnþ1ðkrsrÞÞ

þ c13mnnkzJnðkrsrÞ=rgSmðzÞSnðhÞ ðA:7bÞ

w1 ¼
X
n

X
m

fc11mnkzJnðkrerÞ þ c13mnk
2
rsJnðkrsrÞgCmðzÞCnðhÞ ðA:7cÞ
The constitutive relations are
rii ¼ kDþ 2leii; ii � rr; hh; zz

D ¼ err þ ehh þ ezz
rij ¼ leij; ij � rh; hz; zr

ðA:8Þ

err ¼ oru; ehh ¼ u=r þ 1=roht; ezzozw

erh ¼ 1=rohuþ ort� t=r

ehz ¼ oztþ 1=rohw; ezr ¼ orwþ ozu

ðA:9Þ
Substituting (A.7) in (A.9) then in (A.8) produces
rrr1 ¼ l
X
n

X
m

fc11mnðð�ðbþ 2ÞðkrerÞ2 þ 2ðn2 � nÞ � bðkzrÞ2ÞJnðkrerÞ=r2 þ 2kreJnþ1ðkrerÞ=rÞ

þ 2c12mnððn2 � nÞJnðkrsrÞ=r2 � nkrsJnþ1ðkrsrÞ=rÞ
� 2c13mnkzððn2 � n� ðkrsrÞ2ÞJnðkrsrÞ=r2 þ krsJnþ1ðkrsrÞ=rÞgSmðzÞCnðhÞ ðA:10aÞ

rhh1 ¼ l
X
n

X
m

fc11mnð�ð2ðn2 � nÞ þ bðkerÞ2ÞJnðkrerÞ=r2 � 2kreJnþ1ðkrerÞ=rÞ

þ 2c12mnð�ðn2 � nÞJnðkrsrÞ=r2 þ nkrsJnþ1ðkrsrÞ=rÞ þ 2c13mnkzððn2 � nÞJnðkrsrÞ=r2

þ krsJnþ1ðkrsrÞ=rÞgSmðzÞCnðhÞ ðA:10bÞ

rzz1 ¼ l
X
n

X
m

f�c11mnððbþ 2Þk2z þ bk2reÞJnðkrerÞ � 2c13mnkzk
2
rsJnðkrsrÞgSmðzÞCnðhÞ ðA:10cÞ

srh1 ¼ l
X
n

X
m

f2c11mnð�ðn2 � nÞJnðkrerÞ=r2 þ nkreJnþ1ðkrerÞ=rÞ

� 2c12mnððn2 � n� ðkrsrÞ2=2ÞJnðkrsrÞ=r2 þ krsJnþ1ðkrsrÞ=rÞ
þ 2c13mnkzððn2 � nÞJnðkrsrÞ=r2 � nkrsJnþ1ðkrsrÞ=rÞSmðzÞSnðhÞ ðA:10dÞ

shz1 ¼ l
X
n

X
m

f�2c11mnnkzJnðkrerÞ=r � c12mnkzðnJnðkrsrÞ=r � krsJnþ1ðkrsrÞÞ

þ c13mnnðk2z � k2rsÞJnðkrsrÞ=rgCmðzÞSnðhÞ ðA:10eÞ

srz1 ¼ l
X
n

X
m

f2c11mnkzðnJnðkrerÞ=r � kreJnþ1ðkrerÞÞ þ c12mnnkzJnðkrsrÞ=r

þ c13mnðk2z � k2rsÞð�nJnðkrsrÞ=r þ krsJnþ1ðkrsrÞÞgCmðzÞCnðhÞ ðA:10fÞ

SnðhÞ ¼ sinðnhÞ; CnðhÞ ¼ cosðnhÞ; n ¼ 0; 1; . . . ;N

kre ¼ ke ¼ x=ce; krs ¼ ks ¼ x=cs; b ¼ k=l
ðA:10gÞ
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The Bessel functions in (A.5a) through (A.10) are real when x is greater than both shear and extensional
cut-off frequencies of the mth axial mode
x P xðmÞ
co;e ¼ kzce ) ke P kz; x P xðmÞ

co;s ¼ kzcs ) ks P kz ðA:11Þ
Since ce > cs then (A.5a) through (A.10) are valid when xP kzce. However, if kzcs < x < kzce then Jn(krer),
Yn(krer) are replaced by In(krer), Kn(krer). Similarly, if x < kzcs then Jn(krsr), Yn(krsr) are replaced by In(krsr),
Kn(krsr). Expressions for displacement and stress similar in form to (A.7) and (A.10) follow with appropri-
ate changes in sign but will not be listed here for shortness.
Appendix B. Asymmetric dynamic solution of plane-strain cylinder

For the plane-strain problem, displacements and stresses are found from Appendix A when the z depen-
dence and axial displacement w vanish. Expressions for u and t are
u1 ¼
X
n

fc11nkreðnJnðkrerÞ=ðkrerÞ � Jnþ1ðkrerÞÞ þ c12nnJnðkrsrÞ=rgCnðhÞ

t1 ¼
X
n

f�c11nnJnðkrerÞ=r � c12nkrsðnJnðkrsrÞ=ðkrsrÞ � Jnþ1ðkrsrÞÞgSnðhÞ
ðB:1Þ

SnðhÞ ¼ sinðnhÞ; CnðhÞ ¼ cosðnhÞ; n ¼ 0; 1; . . . ;N

kre ¼ ke ¼ x=ce; krs ¼ ks ¼ x=cs
Expressions for stresses rrr, rhh, rzz, srh are
rrr1 ¼ l
X
n

fc11nðð�ðbþ 2ÞðkrerÞ2 þ 2ðn2 � nÞÞJnðkrerÞ=r2 þ 2kreJnþ1ðkrerÞ=rÞ

þ 2c12nððn2 � nÞJnðkrsrÞ=r2 � nkrsJnþ1ðkrsrÞ=rÞgCnðhÞ ðB:2aÞ

rhh1 ¼ l
X
n

fc11nð�ð2ðn2 � nÞ þ bðkerÞ2ÞJnðkrerÞ=r2 � 2kreJnþ1ðkrerÞ=rÞ

þ 2c12nð�ðn2 � nÞJnðkrsrÞ=r2 þ nkrsJnþ1ðkrsrÞ=rÞgCnðhÞ ðB:2bÞ

rzz1 ¼ l
X
n

f�2c11nbk
2
reJnðkrerÞgCnðhÞ ðB:2cÞ

srh1 ¼ l
X
n

f2c11nð�ðn2 � nÞJnðkrerÞ=r2 þ nkreJnþ1ðkrerÞ=rÞ � 2c12nððn2 � n� ðkrsrÞ2=2ÞJnðkrsrÞ=r2

þ krsJnþ1ðkrsrÞ=rÞgSnðhÞ ðB:2dÞ
Appendix C. Asymmetric static solution of plane-strain cylinder

For the homogeneous cylinder with material properties (k0,l0), the static solution is obtained by solving
Eq. (1a) with vanishing time dependence. The solution takes the form
usðr; hÞ ¼ curaCnðhÞ; tðr; hÞ ¼ ctraSnðhÞ ðC:1Þ
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where cu and ct are constant coefficients. Substituting (C.1) in (1a) yields the equations
ððk0 þ 2l0Þða2 � 1Þ � l0n
2Þcu þ nððk0 þ l0Þa� ðk0 þ 3l0ÞÞct ¼ 0

nððk0 þ l0Þaþ ðk0 þ 3l0ÞÞcu � ððk0 þ 2l0Þn2 � l0ða2 � 1ÞÞct ¼ 0
ðC:2Þ
A non-trivial solution requires that the determinant of the coefficients of cu and ct vanish. This yields a
fourth order polynomial in a with 4 roots
a ¼ �ðn� 1Þ ðC:3Þ
The solution (C.1) then takes the form
usðr; hÞ ¼
X
n¼0

X4

i¼1

cu;niraniCnðhÞ ðC:4aÞ

tsðr; hÞ ¼
X
n¼0

X4

i¼1

ct;nirani SnðhÞ ðC:4bÞ
Substituting each of the roots of (C.3) in (C.2) determines a relation between cu,ni and ct,ni
ct;ni ¼ � ðk0 þ 2l0Þða2ni � 1Þ � l0n
2Þ

nððk0 þ l0Þani � ðk0 þ 3l0ÞÞ
cu;ni ðC:5Þ
Substituting (C.4) into the constitutive relations 2a,2b(2) gives
rrrsðr; hÞ ¼
X
n¼0

X4

i¼1

fcu;niðk0ðani þ 1Þ þ 2l0aniÞ þ ct;ni; nk0grani�1CnðhÞ

rhhsðr; hÞ ¼
X
n¼0

X4

i¼1

fcu;niðk0ðani þ 1Þ þ 2l0Þ þ ct;ninðk0 þ 2l0Þgrani�1CnðhÞ

rzzsðr; hÞ ¼ k0
X
n¼0

X4

i¼1

fcu;niðani þ 1Þ þ ct;ningrani�1CnðhÞ

srhsðr; hÞ ¼ �l0

X
n¼0

X4

i¼1

fcu;nin� ct;niðani � 1Þgrani�1SnðhÞ ðC:6Þ
Substituting (C.5) in the boundary conditions
rrrsðrpÞ ¼
XNh

n¼0

pnCnðhÞ; rrrsðroÞ ¼ 0 ðC:7aÞ

srhsðrpÞ ¼ 0; srhsðroÞ ¼ 0 ðC:7bÞ
yields Nh uncoupled linear equations in each set of coefficients cu,ni and ct,ni.
For the cylinder with h-inhomogeneity in E given by (4), the static equations (5a,b) with vanishing time

derivative are solved by the Galerkin method. A set of orthogonal trial functions is assumed each satisfying
the homogeneous differential equations (3) and boundary conditions (9). Candidate functions are the
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eigenfunctions of the homogeneous cylinder with n P 0. Since the total static solution is made of the
axisymmetric static solution modified by an asymmetric part accounting for material inhomogeneity,
that static solution is added to the set of trial functions. In this way, the displacement expansion takes
the form
0

0

1.

0
0

1.

1.

Fig. 8.
m = 1,
m = 1,
usðr; hÞ ¼
X
n¼0

X
m¼1

bmnumnCnðhÞ þ us0ðrÞ

tsðr; hÞ ¼
X
n¼1

X
m¼1

bmnwmnSnðhÞ
ðC:8Þ
{u(r),w(r)}nm are the eigenfunctions of the homogeneous problem determined by (10) satisfying the homo-
geneous boundary conditions (9), and us0(r) is static axisymmetric radial displacement defined by (C.4a)
with n = 0, satisfying the inhomogeneous boundary conditions (C.7a)
us0ðrÞ ¼ �p0r
2
pðr=ðb0 þ 1Þ þ r2o=rÞ=ð2l0ðr2o � r2pÞÞ; b0 ¼ k0=l0 ðC:9Þ
Substituting (C.8) in the static equivalent of (5a,b), then multiplying (5a) by umncos(nh) and (5b) by
wmnsin(nh), integrating over the domain rp 6 r 6 ro, 0 6 h 6 2p then adding the two equations produces
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

u0s(a1)

(b1)

(c1)

(a2)

(b2)

r/ro r/roϕ
11

ϕ
01

ϕ
21

ϕ
31

ϕ
41(c2)

admissible inadmissible

(b3) ϕ
32

(a3) ϕ
22

ϕ
42(c3)

0 0.2 0.4 0.6 0.8 1.0

r/ro

admissible

Sample of low wave number admissible and inadmissible trial functions in static response: (a1) u0s static n = 0, (a2) u21 n = 2,
(a3) u22 n = 2, m = 2 (b1) u01 n = 0, m = 1 (b2) u31 n = 3, m = 1, (b3) u32 n = 3, m = 2 (c1) u11 n = 1, m = 1, (c2) u41 n = 4,
(c3) u42 n = 4, m = 2.
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q
X
k¼0

X
j¼1

½Hð1Þ
nk R

ð1Þ
mn;jk þHð2Þ

nk R
ð2Þ
mn;jk�x2

jkbjk

þ l0

X
k¼0

X
j¼1

½Hð3Þ
nk R

ð3Þ
mn;jk þHð4Þ

nk R
ð4Þ
mn;jk�bjk ¼ �p0dn0H

ð4Þ
n0 R

ð0Þ
mn

Rð0Þ
mn ¼ �r2p=ðr2o � r2pÞ

Z ro

rp

wmnð1þ ðro=rÞ2Þdr

ðC:10Þ
All other quantities in (C.10) are defined in (15b,c). The linear simultaneous equations (C.10) determine the
coefficients bjk.

Since the functions {u(r),w(r)}nm are only trial functions and not solutions of the static equations, not all
functions are physically admissible. In fact, the lowest mode m = 1 for n P 2 is dropped for reasons to fol-
low. Fig. 8(a1) plots normalized us0(r) which varies exponentially with r. Fig. 8(b1) and (c1) plot u01(r) and
u11(r) which follow the same qualitative behavior. For modes u21(r), u31(r), u41(r) etc., this trend changes
as shown in Fig. 8(a2,b2,c2) as these functions increase with r. These shapes although consistent with exten-
sional dynamic resonances, are inconsistent with static deformation from pressure at the inner boundary as
shown in Fig. 8(a1). Functions with higher wave number as u22(r), u32(r), u42(r) etc. (Fig. 8(a3,b3,c3)) are
all admissible. It then follows that for n P 2 extensional modes with m = 1 are inadmissible trial functions
excluded in the expansion (C.8).
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