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Abstract

Effects on transient waves of circumferential and radial inhomogeneity are studied in a plane-strain hollow cylinder.
A periodic circumferential inhomogeneity modulating a constant value is analyzed adopting the Galerkin method
where trial functions are chosen as the axisymmetric and asymmetric modes of the homogeneous cylinder. A periodic
radial inhomogeneity is analyzed by dividing the cylinder into annular segments of constant width. A stepwise variation
in modulus is assumed where modulus is constant over each segment. Adopting transfer matrices, continuity of state
variables at interfaces of segments establishes the global dynamic equilibrium of the segmented cylinder. The static-
dynamic superposition method is employed to solve for transient response.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Propagation of transient stress waves in human tissue during projectile penetration concerns medical
researchers as overpressure from these waves may cause indirect trauma in human organs. As the projectile
penetrates into tissue, it moves material by replacing it with its own volume. When tissue fails, it acts more
like a fluid, lessening the amount of material being compressed by the moving projectile. In the radial direc-
tion, tissue is compressed by an expanding cross-section of the projectile’s smoothly curved nose. This rapid
expansion generates compressive waves symmetric about the projectile’s axis that attenuate with distance.
El-Raheb (2004) develops a model that approximates penctrated tissue as a homogeneous hollow finite
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cylinder with inner radius that of the projectile and a sufficiently large outer radius to avoid interference
from reflections at the outer boundary during the simulation time. A radial velocity is prescribed at the cyl-
inder’s inner boundary over the finite projectile length accounting for radial expansion from projectile axial
motion.

This work evaluates the effect on propagation of material inhomogeneity that may result either from spa-
tial variation in modulus or asymmetric radial tearing. Since real tissue inhomogeneity is complicated to
model, the analysis to follow treats two uncoupled types of material inhomogeneity; circumferential or
f-inhomogeneity and radial or r-inhomogeneity. f-inhomogeneity is asymmetric as modulus E varies peri-
odically with angular coordinate 6 but remains constant along the radial coordinate r. In this case both
extensional and shear waves are excited. r-inhomogeneity is axisymmetric as £ varies only along r but re-
mains constant along 6. In this case only extensional waves are excited. In practice both 6 and r inhomo-
geneities exist in tissue, nevertheless the two types are presently addressed separately for parametric
evaluation of each type’s effect avoiding the cross-coupling that may result if both were acting together.
Since histories from the homogeneous finite cylinder model (El-Raheb, 2004) compared favorably with
those from the homogeneous plane-strain model, the latter model is adopted for studying material
inhomogeneity.

Whittier and Jones (1967) studied the propagation of longitudinal and torsional waves in a bi-material
solid cylinder composed of an inner homogeneous core bonded to an outer homogeneous annular cylinder
of different properties. Armenakas (1967), Reuter (1969), Armenakas and Keck (1970), studied flexural
waves in bi-material cylinders. Keck and Armenakas (1971) presented an exact solution for longitudinal
waves in an infinitely long composite hollow cylinder made of three different transversely isotropic layers.
Vibrations of homogeneous hollow plane-strain cylinders was analyzed by Gazis (1958), Bird et al. (1960),
and Baltrukonis (1960). The references above were restricted to three concentric axisymmetric layers. Yin
and Yue (2002) analyzed the plain-strain axisymmetric problem with multiple annular layers using Laplace
transforms to integrate time dependence. Heyliger and Jilania (1992) adopted a variational method and a
Ritz approximation to study frequency response of inhomogeneous cylinders and spheres. Steinberg (1995)
formulated the inverse spectral problem to determine properties of a cylinder with inhomogeneous mate-
rials. Inertial f-inhomogeneity from point masses attached to the wall of a thin cylinder was analyzed by
El-Raheb and Wagner (1989).

In Section 2, O-inhomogeneity is treated adopting the Galerkin method. Eigenfunctions of the asym-
metric homogeneous dynamic equations are utilized as trial functions in the inhomogeneous dynamic equa-
tions. Orthogonality of radial and circumferential dependence produces an eigenvalue problem with
coupling coefficients as the eigenvector. The static-dynamic superposition method is adopted to solve the
transient response. In Section 3, a stepwise r-inhomogeneity is treated adopting transfer matrices of annular
segments with varying properties. Continuity of stress and displacement at interfaces of segments yields a
global transfer matrix producing eigenstates of the multi-layered cylinder. Once more, transient response is
found adopting the static-dynamic superposition method. Section 4 discusses transient histories in hollow
cylinders with the two types of inhomogeneity.

2. Circumferential inhomogeneity

Consider the plane-strain dynamic equilibrium equations in cylindrical coordinates

0,0, + (0, — 099) /7 + 1/100T,0 = pOyu
ar‘l,'rg + Zfrg/r -+ 1/7’69099 = p@,,v (la)
r,<r<r, 0<0<2n
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with boundary conditions

O-”‘(rpae;t) :p()f;(t% r,g(r,,,(?;t) = 0 (lb)
Urr(roao;t) :Oa Tr(?(rov();t) =0

r, and r, are cylinder inner and outer radii, o,,, Ggy, 7,9 are normal and shear stresses, (r,0) are radial and
circumferential coordinates, (u,v) are corresponding displacements, p is density, 7 is time, p, is magnitude of
uniform pressure applied at r =r, and f,(¢) is its time dependence. The constitutive relations are

g = y¥ + 2,[181‘,', i = rr, 09, zz
4= &r + €00, &z = 0 (23)

0 = puey, ij=rl, 0z, zr

&r =0, ep=u/r+1/ropw, e,=0 (2b)
&o = 1/rdpu + 0,0 — v/r

(4, n) are the Lame’ constants. For the homogeneous medium, substituting (2b) in (2a) then in (1a) yields the
dynamic displacement equations

w(Dyju + Dypv) = pduu

3
(D211 4+ Do) = pdyv G)

52
Diu =[(B+2)V, +1/r?0y), D =1/rd[(f+1)d, — (B+3)/r]
2
Doy = 1/r0g[(B+1)8, + (B+3)/r], D = [V + (B +2)/r*0u]
V=0, 4+ 1/r0, — 1/ B=2/u=2v/(1-2v)
v is Poisson’s ratio. Eq. (3) is the limiting case of Eq. (A.1) in Appendix A when the z dependence vanishes.

Assume a circumferentially inhomogeneous modulus p(6) symmetric about 6 =0 with a Fourier
expansion

Ng

u(0) = o Y _eCi(0),  Si(0) =sin(10), C,(0) = cos(10) (4)
=0

Substituting (4) in (2a,b) then in (1a) produces the equations

ZelCI(B)MO(Dllu +D120) + Z 611S1<9)ﬂ0(511u + 512[)) = p@,,u (Sa)

=0 =1

Z e/C,(B),uO(DZIu —+ Dzzl)) —+ Z e,lS,(@),uO(lN)zm —+ 5220) = pa,,v (Sb)

=0 =1

Dy = —1/r%0y, Dy, = —1/r0, + 1/

Dy = —B/rd, — (B+2)/r*, Dyn=—(f+2)/rd

To solve (5), the Galerkin method is adopted. u and v are expanded in terms of orthogonal trial functions
satisfying the boundary conditions at the inner and outer walls of the cylinder r = r, and r = r,. One admis-
sible set is the eigenfunctions of the homogeneous problem in Eq. (3) with u = uo the axisymmetric term in
the u(0) expansion (4). For harmonic motions in time with radian frequency w and periodicity along 0, the
solution to (1a) is
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u(r,0,t) = (uy(r,0) + us(r, 0))e"
| (60)

o(r,0,t) = (v (r,0) + va(r, )"

Uy = Z{Cllnkre(nt]n(krer)/(krer) — it (k) 4 cronnd u (kys) /7Y Co(6)

v = Z{—cmn]n (o) /1 — Cramrs (1T (st Ubrst) — Tt (Krst)) } S0 (0) o)

S,(0) = sin(n0), C,(0) = cos(nb)

(uy,v;) are derived in Egs. (B.1) of Appendix B, and (u,,v,) have the same form as (u,v;) with J,(kr) re-
placed by Y, (kr) and (c21,, ¢22,) replacing (cqy,, ¢12,)- Expressions for a,,, 7,4 similar to those for displace-
ment in (6a) and (6b) can be expressed as

O'rr(r; 9, t) = (0',«,-1 (l", 9) + GrrZ(r, 0))eim1

10(r,0,1) = (1,01 (7, 0) + T,02(r, 0))e" (7a)
G = M Z;{mn((f(ﬁ 4 2)(ket)? 4 2002 — 1)) (el /7 + 2o i (krer) /1)
+§;h«#—nwxhgv#—nmgwmhgyay;w) (7b)
Tt = 1> A2610(—= (12 = ) (krer) 72+ ke i1 (k) 1) = 21,0 = 1 — (et /20 (k) /7P
+ ZSJ,,H (kysr) /1), (0) (7o)

(0,11,7,61) are derived in Egs. (B.2) of Appendix B, (k,., k,s) are radial wave numbers defined in Egs. (B.1) of
Appendix B. (a,,2,7,92) have the same form as (0,1, 7,91) With J,(kr) replaced by Y,(kr) and (c11,, 12,) T€-
placed by (¢21,,¢22,,). Re-write (7a) in the form

S(r,0,0) = {0, 70} =D _ 9.(0)B,(r)c,e”
n=0
C,(0) 0 (8)
0 S.(0) '

B,(r) is a 2 x 4 matrix of the radial functions in (o,,,,9) multiplying ¢, = {11, C12m Ca1m €225} © in (7b.C).
The homogeneous boundary conditions (1a) are

Gn(r) =0, G,(r,) = 0 (9a)

1971(0) =

10(r,) =0,  T(r,) =0 (9b)

Substituting (8) in (9a,b) and enforcing orthogonality of the 6 dependence yields a set of uncoupled eigen-
value problems for each circumferential wave number n

B, —0 B, |20
B.(r,)

= det|B,| =0 = {o(r),y(r); 0},,

(10)

B, is a 4 x 4 matrix, {¢(r),¥(r)},.. are the displacement eigenfunctions, w,,, are the eigenvalues, and m is
radial wave number. In what follows ¢,,,,,(r) and ,,,,,(r) will be written as ¢,,, and ¥,,, for shortness since
it is known that they are functions of r only. Expand (u,v) in the eigenfunctions (9)
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u(r,0,t) = ZZamn @ C

n=0 m=

o(r, 6,1) Z Zamn W oS (0 (1

Substituting (11) in (5a,b) yields
r (1) =(r)
ﬂozelcl(e)z Zajk(t)(D§1)<P+D1z ) Ci(0 +H02€1151 a()(Dyy ¢ + Dy ), Si(0)

k=0 j=1 k=1 j=1

_pz Zamn (/)mn n

Si(0) :nsm(mk@), Ci(0) = cos(k0)
(12a)

uozeza(e)ZZa_,-ka)wé?ww W) ;Sk(0 +uozezlSz S au(t)(DS o+ D) Ch(0)p

k=1 j=1 k=0 j=1

=p> Zamn WS (0 (12b)

n=1 m=

In (12a,b) the operators Dl.j are the same as D; ;in (5) with the 6 dependence eliminated, and (s) is derivative
with respect to . From Eq. (3), noting that
(Do + D) = —p/ 1y 00
(Dg?(P + Dgrz) lp)jk = _p/:UOw?klpjk

reduces (12) to

—Zezcz ZZ @5k (1)@ Cr(0) ,uo/ Zellsl Za (=nu /1 = /1> + 5 /1) Sk (0)

k=0 j=

- Z Zamn t) q)mn (143)

n=0 m=

_Ze,C, Z ,ka/k ¥4 Sk(0) /Ze;lS, Za Y(B /7
=0

+<ﬂ+2><p,k/r (B + 2P C(0)

= Z den(t)l//mnSn(H) (14b)

For each (m,n) dyad, multiplying both sides of Eq. (14a) by ¢,,,cos(rnf) and both sides of (14b) by
Vmsin(nf), integrating over the domain r, <7 <r,, 0 < 0 < 27 then adding the two resulting equations
produces

2) (2
( + 5710 TENm”am” + Z Z |: nk mn]k Elk)Rinrz.jkiI wjz'kajk(t)

k=0 j=

(13)

o [0 30  [ORD + O Jan =0 (153)
k=0

J=1

Nm,,:/ ((pfm—klﬁim)rdr, n=0,1,... Ny, m=1,2,....N,

P
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(o :;e, /O Cl(0)C(0)C,(0)do, 6 :;e, /0 C1(0)S,(0)S,(0)do .

nkue,/ (0)S,(0)C,(0)do, nkue,/ 0)C(0)S,(0)d0

1 " 2 "
Rfmz,jk = / (pnzn(p_jkrdr7 Rfmljk = / lpmnlpjkrdr
7, p

p

Rr(jrz,jk = / q)mn(ik(pjk/rz - l//jk/r2 + l//.;-k/r)l’dl" (150)
p

RO, = / (B0 (Bt 2/ + k(B + 2/ )rdr

00 1s the Kronecker delta and ( )’ is derivative w.r.t. r. In arriving at (14a) the orthogonality of (q)mm x//,,, )
was utilized. For a homogeneous material, (953() =0l =0, @,SQ = (95,2 (1 +9d,0)m and Rmn at R =
N yunOmi0n reducing (11a) to the simple form

G (1) + @2, @ (1) = 0 (16)
To diagonalize (14a,b), form the coupled eigenproblem

K. —M.o’la=0, a= {am,,}T

Kemnje = wzk[@i}c)Rmn gk T @nk o /k] + H /P[ nk n /k + @nk m4,3 il (17)

M e jie = (1 4+ 840) TN yun OrmjOrkc

K. is a stiffness matrix of order (N,Ny) X (N,.Ny), M. is a diagonal mass matrix of the same order. The eigen-
problem (13) yields the orthogonal eigenset {® {7, 0); w.;} where @_.(r,0) is the ith eigenvector coupling the
constituent modes {®,,,, V,..} by the coupling coefficients {a,,m,i}T, and w,; are the corresponding eigen-fre-
quencies. The coupled state vector S. = {u,, U¢, Grre, Gooes O--cs Tr0¢) | can be expanded in terms of @(r,0) as

Sc(r,0;1) = Zc,-() @,(r,0) (18a)
@ (r,0) = ZZamn,Sm,,rB

ci(r7 0) = {uw Ucy Orres O00cy Ozzcs Tr()c};'r

(18b)

S, 1s the state eigenvector of the (m,n)th constituent mode and #;, O, - - ., T are components of the ith
coupled eigenvector @ (r, ).
Express displacement u(r, 0;¢) as a superposition of two terms

u(r, 0;1) = uy(r,0)1,(t) +uy(r,0;1) (19)

u,(r, 0) is static displacement vector satisfying (5) with vanishing time dependence and boundary conditions
(1b) with £, (1) = 1 (see Appendix C), u,(r,0; ) is dynamic displacement vector satisfying (5) and boundary
conditions (1b) with f,(¢) =0

( - usO + Z Uan Us(r7 9) = Z VsnSn(H)
n=0
- Z bmn(pmrn sn = menl//mn
m=1 m=1

(20)
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ug(r) is the axisymmetric radial displacement satisfying the inhomogeneous boundary condition (1b) with
(1) =1 (see Appendix C). Expand u,r,0;7) in the eigenfunctions (ﬁd, Vi)

u(r,05t) = Zc,-(t)uc,(r 0), u.(r,0) Z Zam,,,q)mn
i n=0 m=1 (21)

va(r,0;t) = Zci(t)ﬁc,-(r, 0), 0u(r,0) Z Zamn,wmnS

i n=1 m=1

c{t) is generalized coordinate of the ith coupled eigenfunction. Substituting (19)—(21) in (5) and enforcing
orthogonality of the {#., 0.;} set yields uncoupled equations in ¢,¢)

&) + wei(t) = £1(1) (22a)

1‘ = szf
2n
N,,—/ / (@, +vardrd0—n21+5no/ U2, + 72, )rdr

2n
Ny = / / (Uit + D05 )rdrdl (22b)
0 p

=2n / (Usp + ) Ugrdr+ 7y / (UpiUgy + ViVir)rdr
7, n=1

P

nl E Amn, l(pmnv Vﬂ‘i = E amn,ilpmn

m=1

b, are couphng coefficients of the coupled static solution. Eq. (22a) admits the solution

ci(t) = — ! /0[ sin g (t — 1) f,(7)dr (23a)

Wi

If £,(1) is piecewise linear with n, conjoined segments

ns

Fo6) =D (o + Bt = ) [H(t = ) = H(t = 1;,.)]

=1

By = ptier) = fp(t) /1 = 1)), 0y = 1o(t)), 01 =fp(t1) =0 (23b)
Fp(t) = Bi3(t) = B, 5t — tn,41) +Z I — tj1)

then (23a) can be integrated analytically with an accuracy independent of the time interval.

3. Radial inhomogeneity

Consider a stepwise radial variation in modulus as follows. Divide the region r, <r < r, into N, equi-
distant annular segments
Vj<r<r1'+1, j:17"'7Nr

24
Ar=Ar;j=ry —r;=(r, —r,)/N, (24)

Assume that ¢;= {c1;,cy;} " is constant over each segment but varies from segment to segment. Since axial
symmetry holds, the following equation applies to the jth segment
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(4 +20) (0 + 1/70, — 1/ )u; = pdyu; (25)
For harmonic motions in time with radian frequency w, Eq. (25) admits the solution for the jth segment
w(r,t) = w(r)e™,  u,(r) = ey (kyr) + ey Y1 (kyr)
hy = /ey, = (i+2u),/p
Substituting (26) in the constitutive relations (2a,b) yields
Grj = i (—(B+ 2)kejJo(kejr) + 2T 1 (kejr) /1) + picai(—(B + 2)keiYo(kejr) + 2Y 1 (kejr) /1) (27)

For each annular segment, express the state vector S; = {G,,,%;} in terms of the constant vector
¢ = fey eyl

S;(r) = B;(r)e; (28)
B/(r) is a matrix with coefficients the functions multiplying (c;, c5;) in (26) and (27). Evaluating (28) at the

two ends of the jth segment then eliminating ¢; determines the (2 x 2) transfer matrix T; relating state vec-
tors at the ends of a segment

Si(ris1) =T;S;(ry), Ty =[] = B, (r)By(r51) (29a)

(26)

¢; =B, (r))S;(r)) (29b)

Enforcing continuity of S; at interfaces of segments and homogeneous boundary conditions (8a) at r =r,
and r = r, yields the global transfer matrix T in tri-diagonal block form and global S which is the ensem-
ble of all S;

TG'SG:() = det'TG|:0

S = {S1(1),S2(r2), -, S;(r}), -+, S, ()}
[—1 0

0, t, -1 0

b, t, 0 -1

(30)

T = 5, 8, 0 -1
Aoy -1 0
oy 00 -1
L _1 0 -
Eq. (30) determines the eigenset {Sg;w} and in turn C; = {¢;,¢,,...,¢),. .. 7ch}T from (29b).

To solve the transient response problem, decompose the displacement u(r; ) as a superposition of two
terms in the manner as was done for the circumferential inhomogeneity

u(r,t) = u,(r)f,(t) + ua(r, 1) (31)

ug(r) is static displacement satisfying (25) with vanishing time dependence and boundary conditions (1b)
with f,(1) =1, and u,r;?) is dynamic displacement satisfying (25) and boundary conditions (1b) with

Jfo(t) = 0. The static state vector Sy; = {g,,, uS}T of the jth segment takes the form

J

ij(r) = 2(/’{ =+ ,U)]-Clxj + 2/,[].02»?]/}’2 (323)
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uyj(r) = cigr + cag/r (32b)
The global static transfer matrix is determined following the steps that led to Eqgs. (28) and (29)
T, - Ss = Po, ={p,,0,0,...,0}"
s Sas =Py, Po=1{Po } (33)

SGS = {Ssl (rl)asx2(r2)a e 7SSj(rj)7 R SSN,.(rNr)}T

Expand u, in its eigenfunctions @mlr)

udrt Zam q)m

Ny (34)
qu Zkejm CljmJl ejmr) +Czij1(kejml”))(H(l”7}’j) *H(V*Vﬁ,l))
J=1
H(r) is the Heaviside function, k, ; ,, = w,,/c. ; and w,, is the mth eigenfrequency. Substituting (32a,b) in (31)
then in (25) and enforcing orthogonality of the {¢,,} set yields uncoupled equations in a,,(?)

a,,,(t) + wianz(t) = jm(t)

_ R o o 35
Folt) = Now(6)/Nos Ny = / oirdr, Ny = / Puitsrdr (33)
p p
Eq. (35) admits the solution
1 [ _
an(t)=—— [ sinw,(t—-1)f,(r)dr (36)
(J)m 0
4. Results
Consider a plane-strain cylinder with properties

Ey=3.1x10"dyn/cm?, p=093g/cm’, v=0.48 (37)

r, =0.635cm, r,=7.62cm

This yields extensional and shear wave speeds ¢, and ¢, 1.71 and 0.34 km/s and the ratio c./c; ~ 5. Fig. 1
plots the resonant frequency spectrum Q versus discrete n with radial wave number m as parameter.

80 T T T T

60

Q (KH2)

40

20

Fig. 1. Asymmetric mode frequency spectrum of homogeneous plane-strain cylinder.
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Although each frequency corresponds to a discrete integer n value, the points are joined to facilitate dis-
cerning constant m lines in the explanation to follow. Lines of constant m are almost parallel with slope
proportional to ¢;. A constant m-line L,, changes slope and coalesces with the next constant m-line L,
without crossing it. Coalescence without crossing is necessary for uniqueness of the eigenstates. Near coa-
lescence, L,, reverts to its original slope while L,,; proceeds through similar steps to coalesce with L,,»
and so on. Remote from coalescence, these lines have a slope proportional to ¢, and correspond to shear
modes. Near coalescence, envelopes are also straight lines with slope proportional to ¢, and correspond to
extensional modes. Shear modes are denser than extensional modes when c./c; is large as in the present
case. Coupling of shear and extensional modes for n > 1 is what distinguishes asymmetric from axisymmet-
ric motions.

Since the static solution is prerequisite to solving transient response, understanding the effect of 0-inho-
mogeneity on the static problem will help understanding its effect on transient response. The first step starts
with the simple case of the static axisymmetric homogeneous cylinder with unit prescribed pressure at its
inner boundary r = r,,. Fig. 2 plots radial distribution of displacement u, and stresses ¢,,0 and o4g9. Remote
from r = r,, ug o 1/r and (6,9, 6gp0) x 1 /r*, with magnitude equal to applied pressure po. As expected, @,
is compressive and oy 1s tensile since internal pressure expands the cylinder along the radius.

Consider the plane-strain cylinder with f-inhomogeneity in the form of Eq. (4) including only 2 terms

1(0) = (1 +0.5c0s(20)) (38)

u(0) in (38) is symmetric about 0 = 0 and 0 = n/2 requiring that only even n’s be included in the expansion
(C.8) of Appendix C. Convergence of the static solution was achieved with m = 60 and n =0, 2, 4. Fig.
3(al-el) plots dependent variable along r with 0 as parameter and Fig. 3(a2-e2) plots these variables along
0 with r as parameter. At § = 0 where E is largest (Fig. 3(al)), u. decreases along r like u, in Fig. 2(a) with
peak uq,,,(r,,0) at r =r, slightly less than that of u. As 6 increases, u,\(r,, 7/4) diminishes to almost 1/2
Uemx(Fp, 0).Along 0 (Fig. 3(a2)), u, is periodic following approximately the cos(20) distribution of p(0). This
means that along a constant r-line, the cross-section is squashed with larger curvature at 0 = 0 and smallest
curvature at 0 = n/2. This results in flexure of the cross-section adding to oy, a periodic stress component
that changes from compressive at 0 =0 to tensile at 0 = n/2. Indeed Fig. 3(d1,d2) shows a compressive
over-stress at 6 = 0 with magnitude 6p, and a tensile over-stress with magnitude 2p,. The same argument
applies to o... in Fig. 3(el,e2). Note that in Fig. 2 ¢..9 is not plotted since it is small because o, =
Bo/ (14 Bo)rz/ (r2 —r3) =13 /ra < 1. It appears then that in the static case, 0-inhomogeneity magnifies
compressive and tensile stresses because of flexure at and near the inner boundary, and raises axial stress
substantially from the homogeneous case.

Consider transient response of a homogeneous plane-strain cylinder forced by a 10 ps trapezoidal pulse
of unit intensity, with 1 ps rise and fall times and a 8 ps plateau. Fig. 4 plots histories of dependent variables

9E-6 T T T T T 1. T T T T T T
\
\
\
Uo L\ Soo g
6.E-6 | .
0 ~~~~~~~~~~~~~
3.E6 g
i Grl‘O ]
0 L L L L -1 1 L I I
0 0.2 04 0.6 0.8 10 0 0.2 0.4 0.6 0.8 1.0
(@ riro (b) rir,

Fig. 2. Axisymmetric static variables of homogeneous plane strain cylinder.
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Fig. 4. Histories of homogeneous plane-strain cylinder: (a) u, (b) du/dt, (¢) 6., (d) ggg, (€) 0-..

within a 60 ps time range. Fig. 4(a) shows u histories at three different radial stations. u increases almost
linearly while the forcing pulse is nonzero then drops smoothly until waves reflect from the free boundary
r = r,. Note the time delay in response for r = 2r, and r = 4r,, equal to travel time of extensional waves to
reach these stations from r =r,. Fig. 4(b) plots velocity history. Velocity increases steeply with rise time
that of the forcing pulse, then continues to increase at a reduced rate until the forcing pulse elapses consis-
tent with the shape of the u history in Fig. 4(a). The smooth rise during the plateau portion of the pulse is
characteristic of cylindrical symmetry as it is flat in 1-D and 2-D. g,, follows the shape of the forcing pulse
closely since it must satisfy the boundary condition at r = r,, (see Fig. 4(c)). However, gy while being tensile
for all r in the static case (Fig. 2(b)), is compressive throughout the duration of the pulse then changes to
tensile after the pulse elapses. An explanation is that shortly after the pulse is applied, a narrow annular
region bounded by the extensional wave-front undergoes stress while the wave-front acts as a solid but
moving boundary. During this time, the state of stress in this instantaneously confined annular region is
almost hydrostatic where all three normal stress components are approximately equal. Release of pressure
at the end of the pulse and radial motion of the wave-front reverts to the free motion when oy, changes to
tensile.

Consider transient response of the plane-strain cylinder with the 0-inhomogeneity given by (38). Fig. 5
plots histories of each dependent variable along a column for a specific 6. Three values of 0 are chosen: 0, /
4, 7/2. Unless specified on the ordinate of some variable, labels along a row are the same for all 6. Excep-
tions to this rule are when the variable at 6 = 0 is substantially larger than that for other values of 6. At
0 =0 (Fig. 5(al)), magnitudes of the u histories are approximately half those for the other 0’s. This may
seem counter intuitive as it is the opposite of the static case (Fig. 3(al,a2)). Yet, the explanation is the same
as that for the sign of gy in the homogeneous cylinder (Fig. 4(d)). Shortly after the pulse is applied, the
wave-front confines a narrow annular region near r = r, where the state of stress is hydrostatic. Since at
6 = 0, modulus is 3 times larger than at 0 = n/2, and since hydrostatic displacement is inversely propor-
tional to modulus, the result in Fig. 5(al) is obtained. Histories of circumferential displacement v are plot-
ted only for 0 = /4 (Fig. 5(b2)) since v o sin(n0) vanishes at 0 =0 and 0 = /2 for n=2 and n=4.
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Magnitude of v is approximately 1/5 that of u for the § shown. Also, travel time is approximately 5 times
that for u in Fig. 5(a2). This implies that v propagates at the speed of shear waves c¢;. Histories of a,, (Fig.
5(cl-c3)) qualitatively resemble the corresponding ones of the homogeneous cylinder (Fig. 4(c)). The dif-
ference is that magnitude of o, reduces with modulus as evidenced by comparing Fig. 5(cl) to Fig.
5(c2,c3). Histories of agg at 0 =0 (Fig. 5(d1)) are particularly interesting. Throughout the duration of
the pulse, response is comparable to the homogeneous cylinder. After the pulse elapses, o49 becomes tensile
reaching a peak 3.5p, at ¢ = 90 ps. The first peak of a4 occurs at the 1/4 period of the coupled fundamental
resonance with a frequency of 2.6 kHz compared to the fundamental axisymmetric resonance of the homo-
geneous cylinder at 6.1 kHz. For an impulsive pressure, setting () = d(t) in (23a) yields a{t) o sin(w;t)/w;
implying that the largest amplitude of free oscillation is inversely proportional to the fundamental reso-
nance. This explains the larger a9y amplitude of the inhomogeneous cylinder compared the homogeneous
one. Histories of a.. (Fig. 5(el-e3)) resemble those of a,, (Fig. 5(c1-c3)) except that magnitude at 0 =0 is
approximately double that at 6 = n/4. Finally, velocity histories (Fig. 5(f1-f3)) follow the u histories (Fig.
5(al-a3)) in that magnitude of velocity at 6 = 0 is lower than that at 6 = n/4 and at 6 = /2.
In the case of r-inhomogeneity assume the following distribution of modulus E(r)

E(r) =Eo(1 +0.5sin(4n(r —r,)/(ro — 1)) (39)

where E, and all other properties are given in (37). In this way, the highest to lowest E(r) ratio is 3 similar to
the 0-inhomogeneity. The cylinder is divided into 45 annular constant width segments each assigned a con-
stant E(r;) following (39) with r; being the mean radius of the ith segment. The corresponding stepwise ¢,
distribution is shown in Fig. 6. The cylinder is forced by the same 10 ps trapezoidal pulse used in the case of
the 6-inhomogeneity. Fig. 7(a—e) plots histories of the cylinder in the interval 0 < ¢ < 80 ps. Throughout the
duration of the pulse, histories of the cylinder with r-inhomogeneity are almost the same as those of the
homogeneous case (see Fig. 4). During this time, response is confined to a narrow ring close to r = r,,, where
magnitude depends only on properties in this region. After the pulse elapses and the wave-front moves out-
ward, response then differs from the homogeneous case especially after reflection from the outer boundary
r=r,.

It is evident from the examples above that for the same level of inhomogeneity, 0-inhomogeneity has a
more pronounced effect on transient response both in shape and magnitude. The fundamental reason is that
with a 0-inhomogeneity, asymmetric waves are excited that include both extensional and shear components
adding to the spectrum modes with lower frequency. These modes magnify amplitude of free motion for all
dependent variables.

15

Ce Icg
[E=N
o

0.5 . . . .
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Fig. 6. Radial stepwise distribution of normalized c,.
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5. Conclusion

Transient response of a plane-strain hollow cylinder was analyzed for both 0- and r-inhomogeneity. For

a f-inhomogeneity with periodic modulation noteworthy results are

—_—

. Dependent variables acquire a periodicity along the circumference.

2. Static g9y and o.. are magnified at 0 =0 and r = r, compared to the homogeneous case.
3. Static gy is modulated by a flexural components that is compressive along the axis of highest modulus

and tensile along the axis of weakest modulus.

4. Asymmetric waves are induced that include extensional and shear components adding modes with lower

—_—

frequencies to the spectrum. This in turn magnifies amplitude of gg9 and o.. after the forcing pulse
elapses and free harmonic motion starts.

For a periodic r-inhomogeneity the principal results are

. When the forcing pulse is acting, response resembles the homogeneous case.

. Differences in response appear after the pulse elapse especially after reflection from the outer boundary.

. Fixing the level of inhomogeneity, 0-inhomogeneity has a more pronounced effect on response than r-
inhomogeneity because of the absence of shear waves in the latter.

Acknowledgments

This work was supported by a grant from DARPA, executed by the US Army Medical Research and

Material Command/TATRC Contract# W81XWH-04-C-0084. The views, opinions and/or findings con-
tained in this paper are those of the author and should not be construed as an official Department of
the Army position, policy or decision unless so designated by other documentation.



M. El-Raheb | International Journal of Solids and Structures 42 (2005) 5356-5376 5371
Appendix A. Asymmetric dynamic solution of homogeneous finite cylinder

For periodic motions in time, The Navier equations of elastodynamics can be written in vector form as
(2 4+ W)V(V-u) + uV - (Vu) + po’u=0 (A.1)

where 4 and u are Lame’s constants, p is density, u is displacement vector, and o is radian frequency. For
cylindrical coordinates (r, 6,z) where z is along the axis of revolution, u can be expressed in terms of three
scalar potentials ¢, &, 1 as follows:

u=Vop+Vx(l.)+VxVx(ne,
@ (Ce.) (ne:) (A2)
u = ue, + vey + we,
where e,, ey, e, are a unit vectors along r, 0, z. Substituting (A.2) in (A.1) then taking the divergence yields

Vo + k=0, V>=0,+1/r0, +1/r’dp + 0.

(A.3)
ke=w/c., ;= (4+2u)/p
Substituting (A.2) in (A.1) and taking the curl yields
VIE+kE=0
Vi +kn=0 (A.4)

ks:w/csv ngu/p

For simply-supported boundary conditions at z =0, / and periodicity along 0, (¢, &, n) can be expressed
in terms of Bessel functions in » and harmonic functions in 6 and z

o(r,0,z) = (ennJulkrer) + €21 Y, (ko)) S0 (2)C,(0)
E(r,0,2) = (1o (kist) + 2 Y, (kys7)) S0 (2)S,(0) (A.5a)
o(r,0,z) = (c13Jn(kysr) + 3Y 1 (kist))Cri(2), C,(6)

S,(0) = sin(n0), C,(0) = cos(nb)

S, (z) = sin(k.,z), C,(z) = cos(k.,z

(6) =Sl Cal9) = co5{lnd) s
ke = ks — ks kg =ki =k, kon = mmn/l

m=12 ... M, n=01,... N

m is an integer axial wave number that follows from the exact solution of the separated axial dependence
satisfying simply supported boundary conditions at z =0,/ which require that wu(r,0,z) =uv(r,0,z) =
0.(r,0,z) =0 at z =0, /. Similarly, » is an integer circumferential wave number that follows from the exact
solution of the separated circumferential dependence satisfying continuity of dependent variable along the
cylinder’s circumference. Subscript m in k., will be dropped hereafter for shortness.

If D is a dependent variable, then

D(JnaJn-H; Yna Yn+l) = Dl(JmJn-H) + D2(Yn> Yn+l) (A6)

Since D, has the same form as D, except that the primitives J,, J,+; in D, are replaced by Y,, Y,+; in D,,
only expressions for D; will be listed below for shortness. Substituting (A.5) in (A.2) produces expressions
for displacements

uy = Z Z{cllmnkre(njn (krer)/(krer) - JrH—l (krer)) + chmnan(krsr)/r

- cl3mnkrsk2(n']n(krsr)/(krsr) —Jut1 (krsr))}Sm (Z)Cn(0> (A'7a)
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v = Z Z{_cllmnwn(k;’er)/r - CIZmnkrs(Mn(krsr)/(krsr) — J g (krsr))

+ cl3mnnkz']n(krsr)/r}Sm (Z)Sn(o) (A7b)
W=D > {Crmked (kier) + Cramkl (k) }Con(2)Co(0) (A7c)

The constitutive relations are
0;i =AM+ 2ue;, ii=rr, 00, zz
A=¢, + ey + e (A.8)

0y = pey, ij=r0, 0z, zr

&r = Oty &gp =u/r+ 1/rdpv, &,0,w
&9 = 1/rdpu+ 0,0 — v/r (A.9)
€. = 0,0+ 1/rdgw, &, =0w+ O.u

Substituting (A.7) in (A.9) then in (A.8) produces

Gt =1 > {tm((—(B+2)(ker)” +2(n* = n) = Blker)’) T u(kier) /7 + 2hre i (krer) [7)

+ 2012,,,,1((112 — n)J,,(k,Sr)/r2 — nkps w1 (k) /7)
- 2013mnkz((n2 —n— (krsr)z)Jn (krs"‘)/’”2 + ks ui (krsr)/r>}Sm(Z)Cn(9) (Aloa)

oo =1 > {eim(—Q20* = n) + Blker)*) T u(ker) /1 = ke it (krer) /7)

+ 2Cl2mn(_(n2 - n)Jn (krsr)/rz + nkran-H (krsr)/r) + 2cl3mnkz(<n2 - n)Jn (krsr)/r2
+ kran-H(kr'sr)/r)}Sm(Z)Cn(e) (AIOb)

Ozz1 = H Z Z{_Cllmn((ﬁ + 2)k§ + ﬁkfe)t]n (krer) - 2cl3mnkzk35t]n (krsr)}Sm (Z)Cn(g) (AlOC)

Tro1 = HZ Z{chlmn(_(n2 - n)Jn(krer)/rz + nkreJn+l(krer)/r)

— 212 ((0* = 1 = (k)2 2T w(kst) /72 + knsT it (ki) /7)
+ 2¢13mk-((0* = n)J,(ksp) [ — nkreT it (hs?) J7) S, (2) S, (0) (A.10d)

o = 1Y D A=2etmnkad (keer) /1 = Cromkz (1 (ki) /1 = ke i1 (isr)

+ Crymn (K = k2) T, (k) 7} Con(2)S,(0) (A.10e)
G = 1Y Y A2enmke (0 (kier) /1 = kT i (Krer)) + ok (isr) [

+ Cram (k2 — I2) (=1, (kyst) [ 7 + Ko i1 (s7) )} Co(2) Co (0) (A.10f)

S,,(H_) =sin(nf), C,(0) =cos(nf), n=0,1,...,N (A.10g)

ke = ke :a)/cm kys = ks :w/cs, ﬁ:;“/,u



M. El-Raheb | International Journal of Solids and Structures 42 (2005) 5356-5376 5373

The Bessel functions in (A.5a) through (A.10) are real when w is greater than both shear and extensional
cut-off frequencies of the mth axial mode

w=0" =k = ke=k, o=0" =kc = ky =k (A.11)

co.e co,§

Since ¢, > ¢, then (A.5a) through (A.10) are valid when o > k.c.. However, if k.c; < o < k.c, then J,(k,.r),
Y, (k,r) are replaced by I,(k,or), K, (k,.r). Similarly, if o < k.c, then J,,(k,sr), Y, (k,sr) are replaced by L,(k,sr),
K, (k,.sr). Expressions for displacement and stress similar in form to (A.7) and (A.10) follow with appropri-
ate changes in sign but will not be listed here for shortness.

Appendix B. Asymmetric dynamic solution of plane-strain cylinder

For the plane-strain problem, displacements and stresses are found from Appendix A when the z depen-
dence and axial displacement w vanish. Expressions for # and v are

Z{Clln re rer)/(krer) - Jn+1 (krer)) + ClZnan (k,.sr)/r}C,,(O)

(B.1)
v = Z{—cnnm o) /1 = Croukis (1, (st (krsr) = J i1 (kirr)) 1S, (0)
S,(0) =sin(nd), C,(0) =cos(nf), n=0,1,...,N
ke =ke = 0/ce, ks =ks=w/cs
Expressions for stresses a,,, oy, 0., T,9 are

o1 = 1 D=+ 2)her) 207 = b)) 1)

+ 2c12n((n2 = ) (k) /1 = ks i (krsr) /1) } G (0) (B.2a)
Goo1 = MZ{Clln(—(z(”z — ) + Blker) W o (krer) /17 = 2hired i1 (Kyer) /1)

+ 2100 (— (0 — n)J, (kysr) J17 + 1k i1 (ysr) /7)Y C(0) (B.2b)
0t = 10y _{=2c1Bkr) n(kier) Y. (0) (B.2c)

Tr01 = ﬂZ{zclln I’l - }’l) ( re:’”)/’"2 + nkreJn+1( rer)/r) 201271((”2 —n— (krsr)z/z)‘]n(krsr)/r2

kit (st /)15, (0) (B.2d)

Appendix C. Asymmetric static solution of plane-strain cylinder

For the homogeneous cylinder with material properties (1o, 1), the static solution is obtained by solving
Eq. (1a) with vanishing time dependence. The solution takes the form

uy(r,0) = c,*C,(0), v(r,0) = c,r*S,(0) (C.1)
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where ¢, and ¢, are constant coefficients. Substituting (C.1) in (1a) yields the equations
((Zo + 2up) (@ = 1) = pion®)eu + n((Ao + o)t — (o + 3p19))e, = 0 (C2)
n((a + 102+ (o + 3110))ew — (o + 2pt0)n> = oo = 1))e, = 0 |

A non-trivial solution requires that the determinant of the coefficients of ¢, and ¢, vanish. This yields a
fourth order polynomial in o with 4 roots

a==x(ntl) (C.3)

The solution (C.1) then takes the form

4
u(r,0) =Y Y cunir™ Cy(0) (C.4a)
n=0 i=l
4
=Y cnr™S,(0) (C.4b)
n=0 i=1

Substituting each of the roots of (C.3) in (C.2) determines a relation between c, ,; and c, ,;

(20 +2p9) (e — 1) — pon?)
n((Zo + to)oni — (Ao + 310))

Coni = —

Cu,ni (CS)
Substituting (C.4) into the constitutive relations 2a,2b(2) gives

4
O-rrs r, H Z{Cu ni /“0 Oy + 1) + Zﬂoam) + ¢, iy n/LO}rxm 1Cn(0)

n=0 i=1

-

6005(r7 0) = {Cuﬁi(/{O(fxm’ + 1) + 2,“'()) + cv,nin(io + 2#0)}runiilcn(0)

1

n=0 i

4
Uzzs(rv 0) = ;“0 Z Z{cmni(“ni + 1) + Clmi”}r%iilcn(e)

n=0 i=1

4

185 r, 0 =~ Z Z{Cu nifl Cum ni 1)}’/%71&1(0) (C6)

n=0 i=1
Substituting (C.5) in the boundary conditions

Oy V[, an a Grrs(ro) =0 (C7a)

n=0
Tr(-)s(rp) = 07 Tré)s(ro) - 0 (C7b)

yields Ny uncoupled linear equations in each set of coefficients ¢, ,; and c, ;.

For the cylinder with #-inhomogeneity in E given by (4), the static equations (5a,b) with vanishing time
derivative are solved by the Galerkin method. A set of orthogonal trial functions is assumed each satisfying
the homogeneous differential equations (3) and boundary conditions (9). Candidate functions are the
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eigenfunctions of the homogeneous cylinder with n > 0. Since the total static solution is made of the
axisymmetric static solution modified by an asymmetric part accounting for material inhomogeneity,
that static solution is added to the set of trial functions. In this way, the displacement expansion takes
the form

us(r,0) = Z men<pmn ) + 50 (7)
0 (C.8)

vs(r, 0) Z me,,l//mnS

{o(r), (1)}, are the eigenfunctions of the homogeneous problem determined by (10) satisfying the homo-
geneous boundary conditions (9), and u(r) is static axisymmetric radial displacement defined by (C.4a)
with n = 0, satisfying the inhomogeneous boundary conditions (C.7a)

o (r) = —pory,(r/ (Bo + 1) +r5/r)/ Quo(ry = 13)) - Bo = 20/ o (C.9)

Substituting (C.8) in the static equivalent of (5a,b), then multiplying (5a) by ¢,,,cos(nf) and (5b) by
Vomsin(nd), integrating over the domain r, < r <r,, 0 < 0 < 27 then adding the two equations produces

admissible inadmissible admissible

(al) Ups (a2 ¢,, (@s) ¢,,

(b1 o, (b2) e, (b3) ¢,

0 02 04 06 08 10 0 02 04 06 08 10
rir

° (D) P, ° (09, oy (30,

Fig. 8. Sample of low wave number admissible and inadmissible trial functions in static response: (al) uy, static n =0, (a2) ¢, n =2,

m=1,(a3) ppon=2,m=2(bl) poy n=0,m=1(12) o5y n=3,m=1,(b3) pan=3, m=2(cl) oy n=1,m=1,(c2) pqy n=4,
m=1,(c3) ppon=4, m=2.
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1) 2) H(2
p Z[@ilgRing,jk + @Ezk)Rr(mz,jk]w?kbfk

+ g (O3 R + O Ry by = ~P1010 @, R

mn,j mn, jk
k=0 j=1

Rf.?ﬁ = _r;/(rg - r,'zv) / 0 Vo (1 + (VO/”)Z)dr

(C.10)

All other quantities in (C.10) are defined in (15b,¢). The linear simultaneous equations (C.10) determine the
coeflicients b.

Since the functions {¢(r), ¥(r)} ., are only trial functions and not solutions of the static equations, not all
functions are physically admissible. In fact, the lowest mode m = 1 for n > 2 is dropped for reasons to fol-
low. Fig. 8(al) plots normalized u,(r) which varies exponentially with . Fig. 8(b1) and (c1) plot ¢¢;(r) and
¢11(r) which follow the same qualitative behavior. For modes ¢»(r), ¢31(r), @41(r) etc., this trend changes
as shown in Fig. 8(a2,b2,c2) as these functions increase with r. These shapes although consistent with exten-
sional dynamic resonances, are inconsistent with static deformation from pressure at the inner boundary as
shown in Fig. 8(al). Functions with higher wave number as ¢,5(r), @32(r), @4o(r) etc. (Fig. 8(a3,b3,c3)) are
all admissible. It then follows that for n > 2 extensional modes with m = 1 are inadmissible trial functions
excluded in the expansion (C.8).
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